2,217 research outputs found

    Competing Interactions among Supramolecular Structures on Surfaces

    Full text link
    A simple model was constructed to describe the polar ordering of non-centrosymmetric supramolecular aggregates formed by self assembling triblock rodcoil polymers. The aggregates are modeled as dipoles in a lattice with an Ising-like penalty associated with reversing the orientation of nearest neighbor dipoles. The choice of the potentials is based on experimental results and structural features of the supramolecular objects. For films of finite thickness, we find a periodic structure along an arbitrary direction perpendicular to the substrate normal, where the repeat unit is composed of two equal width domains with dipole up and dipole down configuration. When a short range interaction between the surface and the dipoles is included the balance between the up and down dipole domains is broken. Our results suggest that due to surface effects, films of finite thickness have a none zero macroscopic polarization, and that the polarization per unit volume appears to be a function of film thickness.Comment: 3 pages, 3 eps figure

    Prescription for experimental determination of the dynamics of a quantum black box

    Full text link
    We give an explicit prescription for experimentally determining the evolution operators which completely describe the dynamics of a quantum mechanical black box -- an arbitrary open quantum system. We show necessary and sufficient conditions for this to be possible, and illustrate the general theory by considering specifically one and two quantum bit systems. These procedures may be useful in the comparative evaluation of experimental quantum measurement, communication, and computation systems.Comment: 6 pages, Revtex. Submitted to J. Mod. Op

    Improved model identification for non-linear systems using a random subsampling and multifold modelling (RSMM) approach

    Get PDF
    In non-linear system identification, the available observed data are conventionally partitioned into two parts: the training data that are used for model identification and the test data that are used for model performance testing. This sort of 'hold-out' or 'split-sample' data partitioning method is convenient and the associated model identification procedure is in general easy to implement. The resultant model obtained from such a once-partitioned single training dataset, however, may occasionally lack robustness and generalisation to represent future unseen data, because the performance of the identified model may be highly dependent on how the data partition is made. To overcome the drawback of the hold-out data partitioning method, this study presents a new random subsampling and multifold modelling (RSMM) approach to produce less biased or preferably unbiased models. The basic idea and the associated procedure are as follows. First, generate K training datasets (and also K validation datasets), using a K-fold random subsampling method. Secondly, detect significant model terms and identify a common model structure that fits all the K datasets using a new proposed common model selection approach, called the multiple orthogonal search algorithm. Finally, estimate and refine the model parameters for the identified common-structured model using a multifold parameter estimation method. The proposed method can produce robust models with better generalisation performance

    Identification of Nonlinear State-Space Systems from Heterogeneous Datasets

    Get PDF
    This paper proposes a new method to identify nonlinear state-space systems from heterogeneous datasets. The method is described in the context of identifying biochemical/gene networks (i.e., identifying both reaction dynamics and kinetic parameters) from experimental data. Simultaneous integration of various datasets has the potential to yield better performance for system identification. Data collected experimentally typically vary depending on the specific experimental setup and conditions. Typically, heterogeneous data are obtained experimentally through (a) replicate measurements from the same biological system or (b) application of different experimental conditions such as changes/perturbations in biological inductions, temperature, gene knock-out, gene over-expression, etc. We formulate here the identification problem using a Bayesian learning framework that makes use of “sparse group” priors to allow inference of the sparsest model that can explain the whole set of observed, heterogeneous data. To enable scale up to large number of features, the resulting non-convex optimisation problem is relaxed to a re-weighted Group Lasso problem using a convex-concave procedure. As an illustrative example of the effectiveness of our method, we use it to identify a genetic oscillator (generalised eight species repressilator). Through this example we show that our algorithm outperforms Group Lasso when the number of experiments is increased, even when each single time-series dataset is short. We additionally assess the robustness of our algorithm against noise by varying the intensity of process noise and measurement noise

    Spectral Line Removal in the LIGO Data Analysis System (LDAS)

    Full text link
    High power in narrow frequency bands, spectral lines, are a feature of an interferometric gravitational wave detector's output. Some lines are coherent between interferometers, in particular, the 2 km and 4 km LIGO Hanford instruments. This is of concern to data analysis techniques, such as the stochastic background search, that use correlations between instruments to detect gravitational radiation. Several techniques of `line removal' have been proposed. Where a line is attributable to a measurable environmental disturbance, a simple linear model may be fitted to predict, and subsequently subtract away, that line. This technique has been implemented (as the command oelslr) in the LIGO Data Analysis System (LDAS). We demonstrate its application to LIGO S1 data.Comment: 11 pages, 5 figures, to be published in CQG GWDAW02 proceeding

    Extracting dynamical equations from experimental data is NP-hard

    Get PDF
    The behavior of any physical system is governed by its underlying dynamical equations. Much of physics is concerned with discovering these dynamical equations and understanding their consequences. In this work, we show that, remarkably, identifying the underlying dynamical equation from any amount of experimental data, however precise, is a provably computationally hard problem (it is NP-hard), both for classical and quantum mechanical systems. As a by-product of this work, we give complexity-theoretic answers to both the quantum and classical embedding problems, two long-standing open problems in mathematics (the classical problem, in particular, dating back over 70 years).Comment: For mathematical details, see arXiv:0908.2128[math-ph]. v2: final version, accepted in Phys. Rev. Let

    Asymptotic inference in system identification for the atom maser

    Full text link
    System identification is an integrant part of control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However for quantum dynamical systems like quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input which may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators and the connection to large deviations is briefly discussed.Comment: 20pages, 3 figure

    Cell-Type-Specific Cytokinin Distribution within the Arabidopsis Primary Root Apex

    No full text
    Cytokinins (CKs) play a crucial role in many physiological and developmental processes at the levels of individual plant components (cells, tissues, and organs) and by coordinating activities across these parts. High-resolution measurements of intracellular CKs in different plant tissues can therefore provide insights into their metabolism and mode of action. Here, we applied fluorescence-activated cell sorting of green fluorescent protein (GFP)-marked cell types, combined with solid-phase microextraction and an ultra-high-sensitivity mass spectrometry (MS) method for analysis of CK biosynthesis and homeostasis at cellular resolution. This method was validated by series of control experiments, establishing that protoplast isolation and cell sorting procedures did not greatly alter endogenous CK levels. The MS-based method facilitated the quantification of all the well known CK isoprenoid metabolites in four different transgenic Arabidopsis thaliana lines expressing GFP in specific cell populations within the primary root apex. Our results revealed the presence of a CK gradient within the Arabidopsis root tip, with a concentration maximum in the lateral root cap, columella, columella initials, and quiescent center cells. This distribution, when compared with previously published auxin gradients, implies that the well known antagonistic interactions between the two hormone groups are cell type specific
    corecore